Как это работает? | Компьютерное зрение

Как самостоятельная дисциплина компьютерное зрение зародилось в начале 50-х годов прошлого века. В 1951 году Джон фон Нейман предложил анализировать микроснимки при помощи компьютеров путём сравнения яркости соседних частей изображения. В 60-е годы начались исследования в области распознавания машинного и рукописного текста. Тогда же были сделаны первые попытки моделирования нейронной сети. Первым устройством, способным распознавать буквы, стала разработка Фрэнка Розенблатта — персептроном. А в 70-х годах ученые стали изучать зрительную систему человека с целью её формализации и реализации в виде алгоритмов. Такой подход был призван позволить распознавать объекты на изображениях. Как же работает современное компьютерное зрение – об этом в сегодняшнем выпуске.

Итак, компьютерное зрение — это набор методов, позволяющих обучить машину извлекать информацию из изображения или видео. Чтобы компьютер находил на изображениях определенные объекты, его необходимо научить. Для этого составляется огромная обучающая выборка, например, из фотографий, часть из которых содержат искомый объект, а другая часть — напротив, не содержит. Далее в дело вступает машинное обучение. Компьютер анализирует изображения из выборки, определяет, какие признаки и их комбинации указывают на наличие искомых объектов, и просчитывает их значимость.

Как это работает? | Компьютерное зрение

После завершения обучения компьютерное зрение можно применять в деле. Для компьютера изображение — это набор пикселей, у каждого из которых есть своё значение яркости или цвета. Чтобы машина смогла получить представление о содержимом картинки, ее обрабатывают с помощью специальных алгоритмов. Сначала выявляют потенциально значимые места. Это можно делать несколькими способами. Например, исходное изображение несколько раз подвергают размытию по Гауссу, используя разный радиус размытия. Затем результаты сравнивают друг с другом. Это позволяет выявить наиболее контрастные фрагменты — яркие пятна и изломы линий.

Как это работает? | Компьютерное зрение

После того как значимые места найдены, компьютер описывает их в числах. Запись фрагмента картинки в числовом виде называется дескриптором. С помощью дескрипторов можно достаточно точно сравнивать фрагменты изображения без использования самих фрагментов. Чтобы ускорить вычисления, компьютер проводит кластеризацию или распределение дескрипторов по группам. В один и тот же кластер попадают похожие дескрипторы с разных изображений. После кластеризации важным становится лишь номер кластера с дескрипторами, наиболее похожими на данный. Переход от дескриптора к номеру кластера называется квантованием, а сам номер кластера — квантованным дескриптором. Квантование существенно сокращает объём данных, которые необходимо обработать компьютеру.

Как это работает? | Компьютерное зрение

Опираясь на квантованные дескрипторы, компьютер может сравнивать изображения и распознавать на них объекты. Он сопоставляет наборы квантованных дескрипторов с разных изображений и делает вывод о том, насколько они или их отдельные фрагменты похожи. Такое сравнение в том числе используется поисковыми системами для поиска по загруженной картинке.

Источник

Related Articles

Back to top button
Close

Atomic Wallet

Jaxx Wallet

Jaxx Wallet Download

Atomic Wallet Download

Atomic Wallet App

atomicwalletapp.com

sinkronisasi reel pendek pola 4 6 spin yang sering mendahului scatter ketiga riset soft start ketika awal spin terlihat ringan tapi menyimpan momentum besar pola jam senja 18 30 20 30 aktivasi wild lebih rapat dibanding sesi lain deteksi visual micro flash efek singkat yang muncul tepat sebelum pre freespin analisis jalur simbol menyilang indikator non linear menuju burst bertingkat fenomena board padat simbol besar berkumpul sebelum tumble panjang terbuka studi turbo pendek mengapa 6 9 spin cepat lebih sering mengunci momentum perilaku reel awal saat reel 1 2 terlihat berat menjelang aktivasi multiplier pola recovery halus wild tunggal muncul setelah dead spin sebagai sinyal balik arah riset scatter tertahan ketika dua scatter bertahan lama sebelum ledakan aktual efek clean frame stabil layar terlihat bersih tepat saat rtp masuk zona seimbang analogi hujan gerimis tumble kecil berulang yang diam diam mengarah ke burst besar mapping ritme animasi perubahan tempo visual sebagai petunjuk pre burst pola jam malam 21 00 23 00 frekuensi multiplier bertingkat meningkat signifikan reel terakhir aktif aktivasi mendadak di reel 5 sebagai pemicu tumble lanjutan observasi spin manual kontrol ritme yang membantu membaca sinyal sistem deteksi low pay berpola ketika simbol kecil justru menjadi fondasi bonus studi pre burst senyap fase tenang 8 12 spin sebelum ledakan tajam jalur simbol turun naik gerakan dinamis yang mengindikasikan multiplier siap aktif blueprint sesi pendek strategi mengatur awal tengah spin agar momentum tidak terbuang reel tengah menguat pola sinkronisasi halus yang sering jadi awal scatter berlapis riset mini tumble ketika 3 tumble pendek berurutan jadi penanda bonus dekat kabut tipis di layar frame redup yang hampir selalu mengarah ke pre multiplier analisis pola jam 17 00 20 00 wild awal muncul lebih konsisten dari hari sebelumnya slide track tajam pergerakan simbol diagonal yang munculkan fase pre burst fenomena quiet board ketika 10 spin tenang justru memunculkan ledakan mendadak scatter luncur lambat indikator unik bahwa freespin akan terealisasi setelah 2 4 spin pola spin turbo ringkas efektivitas 7 turbo cepat dalam memicu tumble besar perubahan warna clean frame efek putih pucat yang jadi kode sebelum multiplier aktif riset simbol berat ketika high pay turun lebih banyak dari biasanya menjelang bonus analisis rotasi vertikal jalur simbol memanjang yang memperkuat potensi burst pola jam dingin 02 00 04 00 scatter sering bertahan lama sebelum akhirnya terkunci fs simulasi 3000 spin frekuensi wild grip muncul tinggi di pola malam hari reel 5 hyper active tanda bahwa sistem sedang mendorong momentum ke kanan analogi sungai tenang layar tanpa tumble yang justru menyimpan ledakan 2 3 putaran lagi frame gelap sesaat sinyal visual tipis sebelum scatter muncul berturut turut pola recovery wild ketika wild muncul setelah dead spin panjang sebagai pembalik keberuntungan mapping simbol rendah bagaimana low pay yang berulang bisa mengangkat probabilitas bonus reel bergerak serempak efek sinkronisasi singkat sebelum pre freespin sequence pola burst 3 lapisan ketika sistem memberikan tumble berjenjang yang mengarah ke ledakan utama